

MRF[®] developments & asphere metrology using VON[™] Technology

presented to:

Mirror Technology SBIR/STTR Workshop June 7th to 9th, 2010 Boulder, CO

Marc Tricard

QED Technologies®

1040 University Avenue, Rochester, NY 14607 USA +1 (585) 256-6540 • tricard@qedmrf.com www.qedmrf.com

Acknowledgements:

NASA: Scott Antonille, Dave Content, John Hraba, Phil Stahl, John West ...

+ many DoD sponsors

- Asphere Stitching Interferometry (ASITM)
 - Variable Optical Null (VONTM) Technology
- Large optic polishing with MRF®
- New aspheric representation

- Asphere metrology typically requires dedicated and costly – null lenses, which can often be the pacing element in optics manufacturing
- o We are reporting here on a NASA and DoD SBIR success story in developing a metrology tool capable of:
 - Measuring concave or convex surfaces
 - Measuring flat, spheres and aspheres
 - ... without dedicated null lenses or tooling
 - For both surface measurements and, in some cases, transmitted wavefronts (e.g. flat & dome TWF)

Asphere Stitching Interferometer (ASI™)

- Measure flats, spheres, and on-axis aspheres
 - Diameters up to 200 mm in all cases, up to 300 mm in most cases
 - Slopes up to 90 degrees, i.e. full hemispheres concave or convex

o Aspheric departures up to 1,000 waves (~630+ microns) from best-fit-sphere or

more

Depends on profile and radius

Automated part alignment and positioning

 ~1 meter of Z-axis travel for automated radius measurements (using cats-eye + stitching)

High spatial resolution output maps

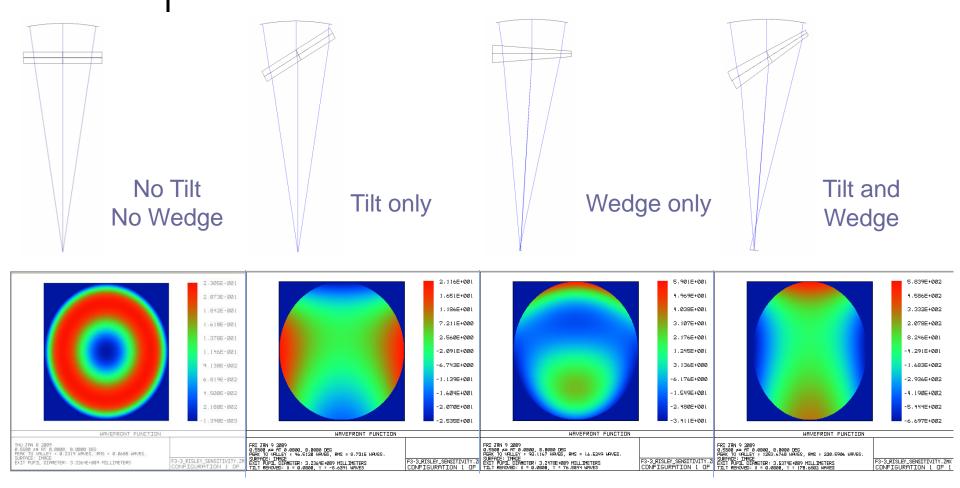
E.g. (500 x 500) pixels, (1K x 1K), (2K x 2K)...

Excellent lateral Frequencies capabilities
 Important for metrology of Mid Spatial Frequencies,
 tight Edge Exclusion, quilting errors etc

Variable Optical Null (VONTM)

Counter-rotating optical wedges

Plane-parallel

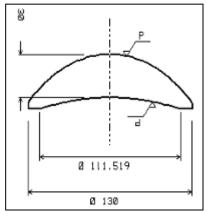

Maximum wedge

- By varying the total wedge angle and tilt, the VON produces low-order aberrations:
 - Astigmatism, coma, trefoil

VON Configurations

small spherical

mostly astigmatism

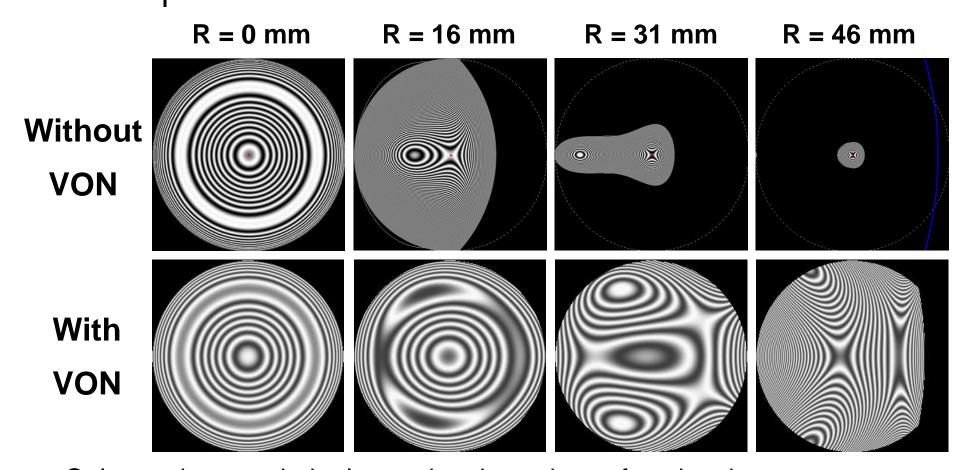

mostly coma


coma and astigmatism



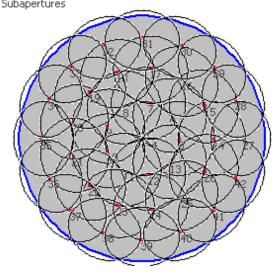
Example: 1,000 Waves Asphere

- o 118 mm CA
- o 72 mm vertex radius
- o 656 micron departure from best fit sphere
- High NA and aspheric departure make this asphere difficult to measure with other techniques



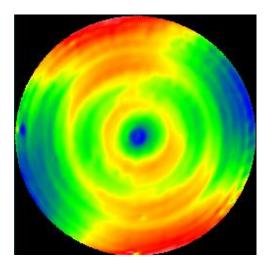
Variable Optical Null (VON) Device

Technologies See video...



- Only need to match the low-order aberrations of each subaperture, producing resolvable fringes over entire field
- Combine measurement of residuals with nominal wavefront of VON

Slide 8 www.qedmrf.com June 2010



Measurement Results

Measurement Lattice

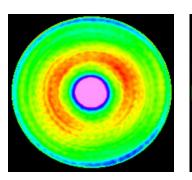
- Measurement result using 6"
 F/2.2 transmission sphere
- ~40 subapertures
- ~15 minute measurement time
- Low mis-match error (3.6nm)

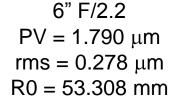
rms = 147nm

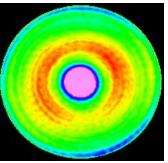
Mis-match map: rms = 3.6nm

PTB Asphere: Measurement Reproducibility and Repeatability

PTB Asphere - Part Id 014542-725-00

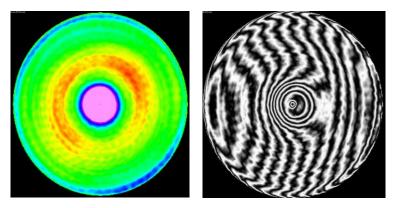

Diameter: 52.2 mm

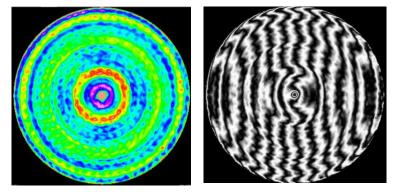

Departure: 59 um (93 waves HeNe)


Base radius: 53.312 mm Convex

	Mean	Std. Dev.
PV	1.812 μm	0.028 μm
rms	0.278 μm	0.008 μm
R0	53.303 mm	2.3 μm

Comparison of measurement results between 6" F/2.2 and 6" F/3.2




6" F/3.2 PV = 1.789 μ m rms = 0.279 μ m R0 = 53.303 mm

ED High Resolution Stitching

2000 x 2000 pixel stitch result using 6" F/3.2

15mm diameter area zoomed to show high resolution

2000 x 2000 pixel stitch result using 6" F/3.2 (36 Zernike terms removed to highlight mid-spatial frequencies)

ED Typical Measurement Times

o Set-up times:

Standard (known) lens: 1-2 minutes

• Unknown lens: 4-8 minutes

o Measurement times:

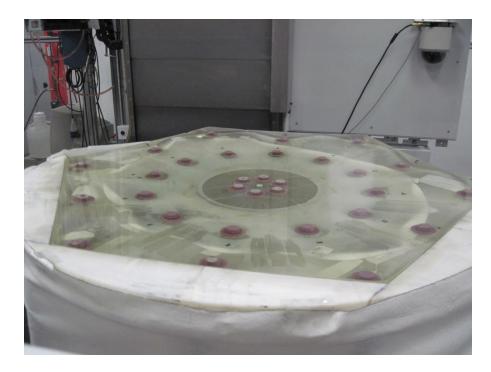
5-10 minutes Flats/spheres:

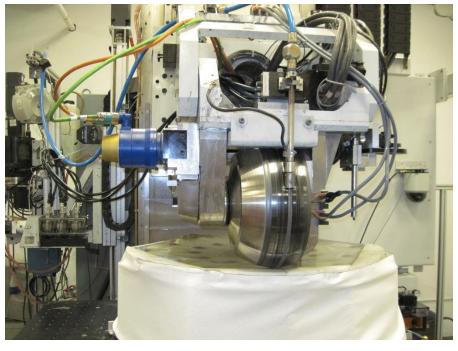
Mild aspheres: 10-20 minutes

Steep aspheres: 15-30 minutes

 Depends largely on optimum transmission sphere availability

ED Current Limitations / Future work


- On-axis (rotationally symmetric) aspheres only
 - Not a fundamental limitation, only current software
 - Very mild off-axis aspheres can be measured now
- No aspheres with inflection points
 - Future versions of the ASI with different VON designs could possibly measure these
- o Can measure aspheres with center holes, as long as the central subaperture "sees" some of the part
- Bigger size ASI...

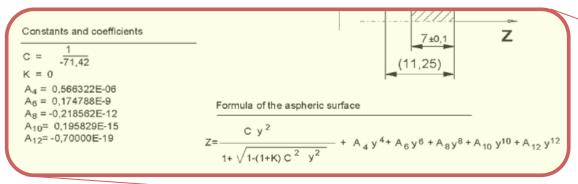


- o The use of configurable null optics with subaperture stitching allows for:
 - Large aspheric departure measurement capability (up to 1000λ)
 - Shorter measurement times (fewer sub-apertures)
- o While maintaining all of the original benefits of subaperture stitching interferometry:
 - Full aperture coverage
 - Higher lateral resolution
 - Increased accuracy
 - Aspheric measurements without dedicated nulls

NASA SPOT Mirror MRF Polishing on Q22-950F machine

Shape: Hexagonal concave sphere

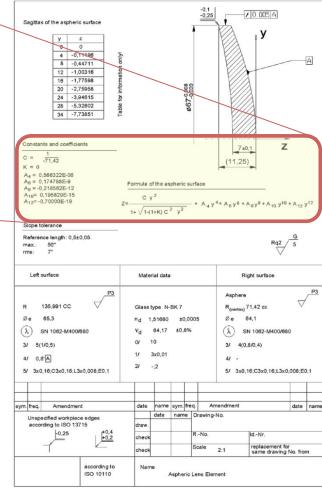
Material: Pyrex


Diameter: 870 mm

Wavefront specification: $\lambda/40$ rms Initial wavefront error: 1.5 λ rms

See talk from John Hagopian and Jason Budinoff at NASA

Effective Characterization of an Asphere's Nominal Shape



Many issues with current representation: Significant digits?

- Accuracy?
- Difficult to constraint etc.

a more effective alternative ("Forbes Representation") has been developed with orthogonal polynomials. See

www.qedmrf.com after 6/15/10 for details...

MRF[®] developments & asphere metrology using VON[™] Technology

presented to:

Mirror Technology SBIR/STTR Workshop June 7th to 9th, 2010 Boulder, CO

Marc Tricard

QED Technologies®

1040 University Avenue, Rochester, NY 14607 USA +1 (585) 256-6540 • tricard@qedmrf.com www.qedmrf.com

Acknowledgements:

NASA: Scott Antonille, Dave Content, John Hraba, Phil Stahl, John West ...

+ many DoD sponsors